
Chapter 6

[137]

4. The private _manager object, marked static, is used inside a critical
section (using lock) to make sure it is thread safe. Thread safety is
very important here. Otherwise, two threads might simultaneously call
GetInstance() and, on finding the EmailManager instance (_manager)
null, will both try to create an instance, thereby creating two instances of the
class. The lock keyword helps us make sure that once a thread enters the
region, no other thread can do so until the first thread exits, making our code
thread safe. We pass the EmailManager's type in order to lock the statement
using the typeof operator to define the scope of the lock statement.

An important point to note is that in the above code we have to make sure that the
type used in the typeof() command is not publicly accessible, otherwise the scope
would be affected. It is better to create a private object within our class to use as a
reference object in the lock statement, as in:

private static object forLock = new object();
public static EmailManager GetInstance()
 {
 // Use 'Lazy initialization'
 if (_manager == null)
 {
 //ensure thread safety using locks
 lock(typeof(forLock)
 {
 _manager = new EmailManager();
 }
 }
 return _manager;
 }

So the above code can be used for implementing a Singleton design pattern in
ASP.NET effectively and safely. Now we will move to another famous design
pattern—the Factory method.

Factory Method
The Factory design pattern is another heavily-used pattern in ASP.NET applications
to help introduce loose coupling and remove dependencies in the code. The Factory
method is a creational design pattern that is used to create objects without any prior
knowledge of the type of the object. We delegate the responsibilities of creating the
actual objects to subclasses or separate factory classes. This can be accomplished by
using interfaces or abstract classes.

Design Patterns

[138]

Why do we need this design pattern? Change is one thing that we cannot avoid in
software development. No matter how strictly we jot down specifications of the
software we are making, there will always be some changes in the future. And each
such change might affect the application code base. So there is no way of avoiding
changes, and unless our applications are designed to adapt to these changes, we will be
spending more time and money on changing the application code each time a change
is requested. The factory design helps us make our applications "change-friendly".

Here is a representative class diagram showing how a Factory pattern might be used
in an object model:

ConcreteObject1

- Methods() - Methods() - Methods()

ConcreteObject2 ConcreteObject3

ConcreteFactory

- CreateObject() - CreateObject()

Ifactory

- Methods()

IConcreteObject

We have IConcreteObject, an interface to be implemented by all of the
ConcreteObject classes. We use this interface to abstract all methods.

We have three concrete object classes implementing the IConcreteObject,
ConcreteObject1, ConcreteObject2, and ConcreteObject3 interfaces.

Now, we have an interface named Ifactory and the ConcreteFactory class is
implementing that interface and is responsible for creating the concrete objects
(ConcreteObject1, ConcreteObject2, or ConcreteObject3). It is up to the concrete
factory as to which class is to be instantiated.

So the responsibility for creating the object is delegated to the ConcreteFactory
class. Let us first understand the basic Factory design , through the use of a simple
practical example.

